并查集路径压缩

并查集里的 find 函数里可以进行路径压缩,是为了更快速的查找一个点的根节点。对于一个集合树来说,它的根节点下面可以依附着许多的节点,因此,我们可以尝试在 find 的过程中,从底向上,如果此时访问的节点不是根节点的话,那么我们可以把这个节点尽量的往上挪一挪,减少数的层数,这个过程就叫做路径压缩。

如下图中,find(4) 的过程就可以路径压缩,让数的层数更少。

节点 4 往上寻找根节点时,压缩第一步,树的层数就减少了一层:

节点 2 向上寻找,也不是根节点,那么把元素 2 指向原来父节点的父节点,操后后树的层数相应减少了一层,同时返回根节点 0。

find 过程代码修改为 :

// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
    assert( p >= 0 && p < count );

    // path compression 1
    while( p != parent[p] ){
        parent[p] = parent[parent[p]];
        p = parent[p];
    }
    return p;

}

上述路径压缩并不是最优的方式,我们可以把最初的树压缩成下图所示,层数是最少的。

这个 find 过程代表表示为:

...
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p) {
    assert (p >= 0 && p < count);

    //第二种路径压缩算法
    if (p != parent[p])
        parent[p] = find(parent[p]);
    return parent[p];
}
...

Java 实例代码

源码包下载:Download

UnionFind3.java 文件代码:

package runoob.union;

/**
 * 基于rank的优化
 */

public class UnionFind4 {

    private int[] rank;   // rank[i]表示以i为根的集合所表示的树的层数
    private int[] parent; // parent[i]表示第i个元素所指向的父节点
    private int count;    // 数据个数

    // 构造函数
    public UnionFind4(int count){
        rank = new int[count];
        parent = new int[count];
        this.count = count;
        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < count ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        assert( p >= 0 && p < count );
        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while( p != parent[p] )
            p = parent[p];
        return p;

        //第二种路径压缩算法
        //if( p != parent[p] )
        //parent[p] = find( parent[p] );
        //return parent[p];
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        if( rank[pRoot] < rank[qRoot] ){
            parent[pRoot] = qRoot;
        }
        else if( rank[qRoot] < rank[pRoot]){
            parent[qRoot] = pRoot;
        }
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 维护rank的值
        }
    }
}