并查集路径压缩
并查集里的 find 函数里可以进行路径压缩,是为了更快速的查找一个点的根节点。对于一个集合树来说,它的根节点下面可以依附着许多的节点,因此,我们可以尝试在 find 的过程中,从底向上,如果此时访问的节点不是根节点的话,那么我们可以把这个节点尽量的往上挪一挪,减少数的层数,这个过程就叫做路径压缩。
如下图中,find(4) 的过程就可以路径压缩,让数的层数更少。
节点 4 往上寻找根节点时,压缩第一步,树的层数就减少了一层:
节点 2 向上寻找,也不是根节点,那么把元素 2 指向原来父节点的父节点,操后后树的层数相应减少了一层,同时返回根节点 0。
find 过程代码修改为 :
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
assert( p >= 0 && p < count );
// path compression 1
while( p != parent[p] ){
parent[p] = parent[parent[p]];
p = parent[p];
}
return p;
}
// O(h)复杂度, h为树的高度
private int find(int p){
assert( p >= 0 && p < count );
// path compression 1
while( p != parent[p] ){
parent[p] = parent[parent[p]];
p = parent[p];
}
return p;
}
上述路径压缩并不是最优的方式,我们可以把最初的树压缩成下图所示,层数是最少的。
这个 find 过程代表表示为:
...
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p) {
assert (p >= 0 && p < count);
//第二种路径压缩算法
if (p != parent[p])
parent[p] = find(parent[p]);
return parent[p];
}
...
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p) {
assert (p >= 0 && p < count);
//第二种路径压缩算法
if (p != parent[p])
parent[p] = find(parent[p]);
return parent[p];
}
...
Java 实例代码
源码包下载:Download
UnionFind3.java 文件代码:
package runoob.union;
/**
* 基于rank的优化
*/
public class UnionFind4 {
private int[] rank; // rank[i]表示以i为根的集合所表示的树的层数
private int[] parent; // parent[i]表示第i个元素所指向的父节点
private int count; // 数据个数
// 构造函数
public UnionFind4(int count){
rank = new int[count];
parent = new int[count];
this.count = count;
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
//第二种路径压缩算法
//if( p != parent[p] )
//parent[p] = find( parent[p] );
//return parent[p];
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
if( rank[pRoot] < rank[qRoot] ){
parent[pRoot] = qRoot;
}
else if( rank[qRoot] < rank[pRoot]){
parent[qRoot] = pRoot;
}
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 维护rank的值
}
}
}
/**
* 基于rank的优化
*/
public class UnionFind4 {
private int[] rank; // rank[i]表示以i为根的集合所表示的树的层数
private int[] parent; // parent[i]表示第i个元素所指向的父节点
private int count; // 数据个数
// 构造函数
public UnionFind4(int count){
rank = new int[count];
parent = new int[count];
this.count = count;
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
//第二种路径压缩算法
//if( p != parent[p] )
//parent[p] = find( parent[p] );
//return parent[p];
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
if( rank[pRoot] < rank[qRoot] ){
parent[pRoot] = qRoot;
}
else if( rank[qRoot] < rank[pRoot]){
parent[qRoot] = pRoot;
}
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 维护rank的值
}
}
}
点我分享笔记