工具调用(Function Calling)
Function Calling(函数调用)是让 LLM 能够使用外部工具的核心机制。
Function Calling(函数调用)允许模型决定何时调用工具、调用哪个工具,以及传递什么参数。
为什么需要 Function Calling?
想象一下,LLM 是一个聪明但手无寸铁的顾问。它知道很多知识,但不能:
- 获取实时信息(如最新天气、股票价格)
- 执行计算(如复杂的数学运算)
- 操作外部系统(如发送邮件、读写文件)
Function Calling 为 LLM 提供了双手,让它能够突破自身限制,执行实际任务。
Function Calling 的工作原理
Function Calling 的基本流程如下:

核心概念
- 工具定义:描述一个工具的功能、参数和返回值
- 工具选择:LLM 根据用户问题选择合适的工具
- 参数提取:LLM 从问题中提取工具所需的参数
- 结果处理:将工具执行结果整合到最终回答中
实例说明
假设我们有一个查询天气的工具,当用户问北京今天天气如何?时:
- LLM 识别出需要调用天气查询工具
- 从问题中提取参数:
city="北京",date="今天" - 调用天气 API 获取数据
- 将天气数据整合成友好的回答返回给用户
工具定义与描述编写
要让 LLM 正确使用工具,首先需要清晰地定义工具,好的工具定义应该像一份清晰的说明书,让 LLM 明白:
- 这个工具是做什么的?
- 什么时候使用它?
- 需要什么参数?
- 参数是什么格式?
工具定义的结构
一个完整的工具定义通常包含以下部分:
实例
# 工具定义示例结构
weather_tool = {
"name": "get_weather", # 工具名称
"description": "获取指定城市的天气信息", # 工具描述
"parameters": { # 参数定义
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "城市名称,如'北京'、'上海'"
},
"date": {
"type": "string",
"description": "日期,格式'YYYY-MM-DD',或'今天'、'明天'",
"enum": ["今天", "明天", "后天"]
}
},
"required": ["city"] # 必填参数
}
}
weather_tool = {
"name": "get_weather", # 工具名称
"description": "获取指定城市的天气信息", # 工具描述
"parameters": { # 参数定义
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "城市名称,如'北京'、'上海'"
},
"date": {
"type": "string",
"description": "日期,格式'YYYY-MM-DD',或'今天'、'明天'",
"enum": ["今天", "明天", "后天"]
}
},
"required": ["city"] # 必填参数
}
}
编写优质的工具描述
1. 描述要清晰具体
- 不好的描述:查询天气
- 好的描述:获取指定城市在特定日期的天气信息,包括温度、湿度、风速和天气状况(晴、雨、多云等)
2. 参数描述要详细
不好的参数描述:
"city": {"type": "string"}
好的参数描述:
"city": {
"type": "string",
"description": "完整的城市名称,如'北京市'、'上海市'。不要使用简称或拼音。"
}
3. 使用枚举限制选项
对于有限的选项,使用枚举(enum)帮助 LLM 理解:
"unit": {
"type": "string",
"description": "温度单位",
"enum": ["celsius", "fahrenheit"],
"default": "celsius"
}
4. 提供示例值
在描述中提供示例,帮助 LLM 理解格式:
"date": {
"type": "string",
"description": "日期,格式应为'YYYY-MM-DD',例如'2024-06-15'"
}
实用工具定义示例
1. 计算器工具
calculator_tool = {
"name": "calculate",
"description": "执行数学计算,支持加减乘除、幂运算等基本运算",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "数学表达式,如'2 + 3 * 4'、'sqrt(16)'、'sin(30)'"
}
},
"required": ["expression"]
}
}
2. 搜索工具
search_tool = {
"name": "search_web",
"description": "在互联网上搜索最新信息",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词,尽量具体明确"
},
"num_results": {
"type": "integer",
"description": "返回结果数量,默认为5",
"default": 5,
"minimum": 1,
"maximum": 10
}
},
"required": ["query"]
}
}
3. 文件操作工具
file_tool = {
"name": "read_file",
"description": "读取指定文件的内容",
"parameters": {
"type": "object",
"properties": {
"file_path": {
"type": "string",
"description": "文件的完整路径,如'/home/user/document.txt'"
},
"encoding": {
"type": "string",
"description": "文件编码,默认为'utf-8'",
"default": "utf-8"
}
},
"required": ["file_path"]
}
}
工具定义的最佳实践
- 名称简洁明确:使用动词开头,如
get_、calculate_、search_ - 描述完整详细:说明工具的用途、适用场景和限制
- 参数验证充分:定义参数类型、范围、格式要求
- 提供默认值:为可选参数提供合理的默认值
- 考虑错误情况:在描述中说明可能出现的错误和限制
工具定义的验证
定义工具后,应该进行验证测试:
def validate_tool_definition(tool_def):
"""验证工具定义是否完整"""
required_fields = ["name", "description", "parameters"]
for field in required_fields:
if field not in tool_def:
return False, f"缺少必要字段: {field}"
# 检查参数结构
if "properties" not in tool_def["parameters"]:
return False, "参数定义缺少properties字段"
return True, "工具定义完整"
# 测试验证
is_valid, message = validate_tool_definition(weather_tool)
print(f"验证结果: {is_valid}, 消息: {message}")
参数提取与验证
LLM 从用户问题中提取参数后,需要对这些参数进行验证和处理,确保工具能够正确执行。
参数提取过程
当 LLM 决定调用工具时,它会分析用户输入,提取出工具所需的参数:
用户输入: "查询北京明天的天气温度"
工具: get_weather
提取参数: {"city": "北京", "date": "明天"}
参数提取的挑战
参数提取可能遇到以下问题:
- 信息缺失:用户没有提供所有必要信息
- 格式不符:用户提供的格式与工具要求不符
- 歧义解析:同一信息可能有多种解释
- 上下文依赖:参数需要结合对话历史理解
参数验证方法
1. 类型验证
确保参数类型符合要求:
def validate_parameters(params, tool_def):
"""验证参数类型"""
errors = []
for param_name, param_def in tool_def["parameters"]["properties"].items():
if param_name in params:
param_value = params[param_name]
expected_type = param_def.get("type")
# 类型检查
if expected_type == "string" and not isinstance(param_value, str):
errors.append(f"参数'{param_name}'应为字符串类型")
elif expected_type == "integer" and not isinstance(param_value, int):
errors.append(f"参数'{param_name}'应为整数类型")
elif expected_type == "number" and not isinstance(param_value, (int, float)):
errors.append(f"参数'{param_name}'应为数字类型")
elif expected_type == "boolean" and not isinstance(param_value, bool):
errors.append(f"参数'{param_name}'应为布尔类型")
return errors
```
2. 范围验证
检查参数值是否在允许范围内:
def validate_range(params, tool_def):
"""验证参数范围"""
errors = []
for param_name, param_def in tool_def["parameters"]["properties"].items():
if param_name in params:
param_value = params[param_name]
# 检查最小值
if "minimum" in param_def and param_value < param_def["minimum"]:
errors.append(f"参数'{param_name}'不能小于{param_def['minimum']}")
# 检查最大值
if "maximum" in param_def and param_value > param_def["maximum"]:
errors.append(f"参数'{param_name}'不能大于{param_def['maximum']}")
# 检查枚举值
if "enum" in param_def and param_value not in param_def["enum"]:
errors.append(f"参数'{param_name}'必须是{param_def['enum']}中的一个")
return errors
3. 必填参数验证
确保所有必填参数都已提供:
def validate_required(params, tool_def):
"""验证必填参数"""
errors = []
required_params = tool_def["parameters"].get("required", [])
for param_name in required_params:
if param_name not in params:
errors.append(f"缺少必填参数: {param_name}")
return errors
完整的参数验证系统
实例
class ParameterValidator:
"""参数验证器"""
def __init__(self, tool_def):
self.tool_def = tool_def
def validate(self, params):
"""执行完整的参数验证"""
all_errors = []
# 检查必填参数
required_errors = self.validate_required(params)
all_errors.extend(required_errors)
# 检查参数类型
type_errors = self.validate_type(params)
all_errors.extend(type_errors)
# 检查参数范围
range_errors = self.validate_range(params)
all_errors.extend(range_errors)
# 检查额外参数(未定义的参数)
extra_errors = self.validate_extra(params)
all_errors.extend(extra_errors)
return len(all_errors) == 0, all_errors
def validate_required(self, params):
"""验证必填参数"""
errors = []
required_params = self.tool_def["parameters"].get("required", [])
for param_name in required_params:
if param_name not in params or params[param_name] is None:
errors.append(f"缺少必填参数: {param_name}")
return errors
def validate_type(self, params):
"""验证参数类型"""
errors = []
for param_name, param_value in params.items():
if param_name in self.tool_def["parameters"]["properties"]:
param_def = self.tool_def["parameters"]["properties"][param_name]
expected_type = param_def.get("type")
if expected_type == "string" and not isinstance(param_value, str):
errors.append(f"参数'{param_name}'应为字符串类型,实际为{type(param_value).__name__}")
elif expected_type == "integer" and not isinstance(param_value, int):
errors.append(f"参数'{param_name}'应为整数类型,实际为{type(param_value).__name__}")
elif expected_type == "number" and not isinstance(param_value, (int, float)):
errors.append(f"参数'{param_name}'应为数字类型,实际为{type(param_value).__name__}")
elif expected_type == "boolean" and not isinstance(param_value, bool):
errors.append(f"参数'{param_name}'应为布尔类型,实际为{type(param_value).__name__}")
return errors
def validate_range(self, params):
"""验证参数范围"""
errors = []
for param_name, param_value in params.items():
if param_name in self.tool_def["parameters"]["properties"]:
param_def = self.tool_def["parameters"]["properties"][param_name]
# 检查最小值
if "minimum" in param_def and param_value < param_def["minimum"]:
errors.append(f"参数'{param_name}'不能小于{param_def['minimum']}")
# 检查最大值
if "maximum" in param_def and param_value > param_def["maximum"]:
errors.append(f"参数'{param_name}'不能大于{param_def['maximum']}")
# 检查枚举值
if "enum" in param_def and param_value not in param_def["enum"]:
errors.append(f"参数'{param_name}'必须是{param_def['enum']}中的一个")
return errors
def validate_extra(self, params):
"""检查未定义的额外参数"""
errors = []
defined_params = set(self.tool_def["parameters"]["properties"].keys())
provided_params = set(params.keys())
extra_params = provided_params - defined_params
if extra_params:
errors.append(f"提供了未定义的参数: {', '.join(extra_params)}")
return errors
# 使用示例
validator = ParameterValidator(weather_tool)
params = {"city": "北京", "date": "明天", "extra": "不应该有的参数"}
is_valid, errors = validator.validate(params)
if is_valid:
print("参数验证通过")
else:
print("参数验证失败:")
for error in errors:
print(f" - {error}")
"""参数验证器"""
def __init__(self, tool_def):
self.tool_def = tool_def
def validate(self, params):
"""执行完整的参数验证"""
all_errors = []
# 检查必填参数
required_errors = self.validate_required(params)
all_errors.extend(required_errors)
# 检查参数类型
type_errors = self.validate_type(params)
all_errors.extend(type_errors)
# 检查参数范围
range_errors = self.validate_range(params)
all_errors.extend(range_errors)
# 检查额外参数(未定义的参数)
extra_errors = self.validate_extra(params)
all_errors.extend(extra_errors)
return len(all_errors) == 0, all_errors
def validate_required(self, params):
"""验证必填参数"""
errors = []
required_params = self.tool_def["parameters"].get("required", [])
for param_name in required_params:
if param_name not in params or params[param_name] is None:
errors.append(f"缺少必填参数: {param_name}")
return errors
def validate_type(self, params):
"""验证参数类型"""
errors = []
for param_name, param_value in params.items():
if param_name in self.tool_def["parameters"]["properties"]:
param_def = self.tool_def["parameters"]["properties"][param_name]
expected_type = param_def.get("type")
if expected_type == "string" and not isinstance(param_value, str):
errors.append(f"参数'{param_name}'应为字符串类型,实际为{type(param_value).__name__}")
elif expected_type == "integer" and not isinstance(param_value, int):
errors.append(f"参数'{param_name}'应为整数类型,实际为{type(param_value).__name__}")
elif expected_type == "number" and not isinstance(param_value, (int, float)):
errors.append(f"参数'{param_name}'应为数字类型,实际为{type(param_value).__name__}")
elif expected_type == "boolean" and not isinstance(param_value, bool):
errors.append(f"参数'{param_name}'应为布尔类型,实际为{type(param_value).__name__}")
return errors
def validate_range(self, params):
"""验证参数范围"""
errors = []
for param_name, param_value in params.items():
if param_name in self.tool_def["parameters"]["properties"]:
param_def = self.tool_def["parameters"]["properties"][param_name]
# 检查最小值
if "minimum" in param_def and param_value < param_def["minimum"]:
errors.append(f"参数'{param_name}'不能小于{param_def['minimum']}")
# 检查最大值
if "maximum" in param_def and param_value > param_def["maximum"]:
errors.append(f"参数'{param_name}'不能大于{param_def['maximum']}")
# 检查枚举值
if "enum" in param_def and param_value not in param_def["enum"]:
errors.append(f"参数'{param_name}'必须是{param_def['enum']}中的一个")
return errors
def validate_extra(self, params):
"""检查未定义的额外参数"""
errors = []
defined_params = set(self.tool_def["parameters"]["properties"].keys())
provided_params = set(params.keys())
extra_params = provided_params - defined_params
if extra_params:
errors.append(f"提供了未定义的参数: {', '.join(extra_params)}")
return errors
# 使用示例
validator = ParameterValidator(weather_tool)
params = {"city": "北京", "date": "明天", "extra": "不应该有的参数"}
is_valid, errors = validator.validate(params)
if is_valid:
print("参数验证通过")
else:
print("参数验证失败:")
for error in errors:
print(f" - {error}")
参数提取与验证的完整流程

参数修正策略
当参数验证失败时,可以采取以下策略:
- 询问用户:直接向用户询问缺失或错误的参数
- 使用默认值:对于可选参数,使用预定义的默认值
- 智能推断:根据上下文推断合理的参数值
- 格式转换:将用户提供的格式转换为工具要求的格式
def fix_parameters(params, errors, tool_def):
"""尝试修正参数错误"""
fixed_params = params.copy()
for error in errors:
if "缺少必填参数" in error:
param_name = error.split(": ")[1]
# 尝试从上下文推断或使用默认值
if param_name == "date":
fixed_params[param_name] = "今天" # 使用当天作为默认值
elif "应为字符串类型" in error:
param_name = error.split("'")[1]
# 尝试转换为字符串
fixed_params[param_name] = str(params[param_name])
return fixed_params
错误处理与重试机制
在实际应用中,工具调用可能会失败。健全的错误处理和重试机制是构建可靠 AI Agent 的关键。
<常见的工具调用错误
- 网络错误:API 调用超时、连接失败
- 参数错误:参数验证失败、格式不正确
- 权限错误:API 密钥无效、权限不足
- 资源错误:服务不可用、达到调用限制
- 逻辑错误:工具内部逻辑错误
错误处理策略
1. 分级错误处理
根据错误类型采取不同的处理策略:
class ErrorHandler:
"""错误处理器"""
def handle(self, error, context):
"""处理错误"""
error_type = self.classify_error(error)
if error_type == "network":
return self.handle_network_error(error, context)
elif error_type == "parameter":
return self.handle_parameter_error(error, context)
elif error_type == "authentication":
return self.handle_auth_error(error, context)
elif error_type == "resource":
return self.handle_resource_error(error, context)
else:
return self.handle_unknown_error(error, context)
def classify_error(self, error):
"""分类错误类型"""
error_str = str(error).lower()
if any(word in error_str for word in ["timeout", "connection", "network"]):
return "network"
elif any(word in error_str for word in ["parameter", "invalid", "missing"]):
return "parameter"
elif any(word in error_str for word in ["auth", "key", "permission"]):
return "authentication"
elif any(word in error_str for word in ["limit", "quota", "unavailable"]):
return "resource"
else:
return "unknown"
def handle_network_error(self, error, context):
"""处理网络错误"""
return {
"success": False,
"error": "网络连接失败,请检查网络后重试",
"retryable": True,
"retry_after": 5 # 5秒后重试
}
def handle_parameter_error(self, error, context):
"""处理参数错误"""
return {
"success": False,
"error": f"参数错误: {str(error)}",
"retryable": False,
"suggestion": "请检查输入参数是否正确"
}
# 其他错误处理方法类似...
2. 用户友好的错误消息
将技术性错误转换为用户能理解的消息:
def user_friendly_error(error):
"""生成用户友好的错误消息"""
error_map = {
"timeout": "请求超时,请稍后重试",
"connection_error": "网络连接失败,请检查网络",
"invalid_api_key": "API 密钥无效,请检查配置",
"rate_limit_exceeded": "调用频率过高,请稍后再试",
"invalid_parameters": "输入参数不正确,请检查后重试"
}
error_str = str(error).lower()
for key, message in error_map.items():
if key in error_str:
return message
return "系统繁忙,请稍后重试"
重试机制
对于可重试的错误,应该实现智能的重试策略:
1. 指数退避重试
import time
import random
class ExponentialBackoffRetry:
"""指数退避重试"""
def __init__(self, max_retries=3, base_delay=1, max_delay=30):
self.max_retries = max_retries
self.base_delay = base_delay
self.max_delay = max_delay
def retry(self, func, *args, **kwargs):
"""执行带重试的函数调用"""
last_error = None
for attempt in range(self.max_retries):
try:
return func(*args, **kwargs)
except Exception as e:
last_error = e
# 检查是否可重试
if not self.is_retryable(e):
raise
# 最后一次尝试,不再重试
if attempt == self.max_retries - 1:
break
# 计算等待时间(指数退避 + 随机抖动)
delay = min(
self.base_delay * (2 ** attempt) + random.uniform(0, 1),
self.max_delay
)
print(f"第{attempt + 1}次尝试失败,{delay:.1f}秒后重试...")
time.sleep(delay)
# 所有重试都失败
raise last_error
def is_retryable(self, error):
"""判断错误是否可重试"""
error_str = str(error).lower()
retryable_errors = ["timeout", "connection", "busy", "temporarily"]
for retryable_error in retryable_errors:
if retryable_error in error_str:
return True
return False
# 使用示例
retry = ExponentialBackoffRetry(max_retries=3)
def call_weather_api(city, date):
"""调用天气API(模拟可能失败)"""
# 模拟API调用
if random.random() < 0.3: # 30%概率失败
raise ConnectionError("API连接超时")
return {"temperature": 25, "condition": "晴"}
try:
result = retry.retry(call_weather_api, "北京", "今天")
print(f"成功获取天气: {result}")
except Exception as e:
print(f"获取天气失败: {e}")
```
2. 熔断器模式
防止连续失败导致系统雪崩:
class CircuitBreaker:
"""熔断器"""
def __init__(self, failure_threshold=5, reset_timeout=60):
self.failure_threshold = failure_threshold
self.reset_timeout = reset_timeout
self.failure_count = 0
self.last_failure_time = None
self.state = "closed" # closed, open, half-open
def execute(self, func, *args, **kwargs):
"""通过熔断器执行函数"""
if self.state == "open":
# 检查是否应该尝试恢复
if self.should_try_reset():
self.state = "half-open"
else:
raise Exception("熔断器开启,服务暂时不可用")
try:
result = func(*args, **kwargs)
# 成功调用,重置状态
if self.state == "half-open":
self.state = "closed"
self.failure_count = 0
return result
except Exception as e:
self.record_failure()
raise e
def record_failure(self):
"""记录失败"""
self.failure_count += 1
self.last_failure_time = time.time()
if self.failure_count >= self.failure_threshold:
self.state = "open"
def should_try_reset(self):
"""检查是否应该尝试重置"""
if self.last_failure_time is None:
return True
elapsed = time.time() - self.last_failure_time
return elapsed > self.reset_timeout
# 使用示例
breaker = CircuitBreaker(failure_threshold=3, reset_timeout=30)
def unreliable_service():
"""模拟不可靠的服务"""
if random.random() < 0.5:
raise Exception("服务异常")
return "服务正常"
for i in range(10):
try:
result = breaker.execute(unreliable_service)
print(f"调用{i+1}: {result}")
except Exception as e:
print(f"调用{i+1}: {e}")
time.sleep(1)
完整的工具调用框架
结合上述所有组件,我们可以构建一个完整的工具调用框架:
实例
class ToolExecutor:
"""工具执行器"""
def __init__(self):
self.tools = {} # 注册的工具
self.validator = ParameterValidator
self.error_handler = ErrorHandler()
self.retry = ExponentialBackoffRetry()
self.breaker = CircuitBreaker()
def register_tool(self, name, tool_def, func):
"""注册工具"""
self.tools[name] = {
"definition": tool_def,
"function": func
}
def execute_tool(self, tool_name, params):
"""执行工具"""
if tool_name not in self.tools:
return {
"success": False,
"error": f"工具'{tool_name}'未注册"
}
tool_info = self.tools[tool_name]
tool_def = tool_info["definition"]
tool_func = tool_info["function"]
# 验证参数
validator = self.validator(tool_def)
is_valid, errors = validator.validate(params)
if not is_valid:
return {
"success": False,
"error": "参数验证失败",
"details": errors
}
# 通过熔断器执行(带重试)
try:
def execute_with_retry():
return self.breaker.execute(
lambda: self.retry.retry(tool_func, **params)
)
result = execute_with_retry()
return {
"success": True,
"result": result,
"tool": tool_name
}
except Exception as e:
# 错误处理
error_response = self.error_handler.handle(e, {
"tool": tool_name,
"params": params
})
return {
"success": False,
"error": error_response["error"],
"retryable": error_response.get("retryable", False),
"suggestion": error_response.get("suggestion", "")
}
def handle_user_request(self, user_input):
"""处理用户请求(简化版)"""
# 1. 让LLM选择工具和提取参数(这里简化处理)
# 实际应用中,这里会调用LLM进行工具选择和参数提取
# 模拟LLM的输出
if "天气" in user_input:
tool_name = "get_weather"
# 简单提取城市(实际应用中LLM会做得更好)
if "北京" in user_input:
params = {"city": "北京", "date": "今天"}
elif "上海" in user_input:
params = {"city": "上海", "date": "今天"}
else:
params = {"city": "北京", "date": "今天"} # 默认值
else:
return "抱歉,我无法处理这个请求"
# 2. 执行工具
result = self.execute_tool(tool_name, params)
# 3. 生成最终回答
if result["success"]:
weather = result["result"]
return f"{params['city']}今天天气:{weather['condition']},温度{weather['temperature']}°C"
else:
return f"获取天气信息失败:{result['error']}"
# 使用示例
executor = ToolExecutor()
# 注册天气工具
def mock_weather_api(city, date):
"""模拟天气API"""
# 模拟API调用延迟
time.sleep(0.1)
return {"temperature": 22, "condition": "多云"}
executor.register_tool("get_weather", weather_tool, mock_weather_api)
# 处理用户请求
response = executor.handle_user_request("北京今天天气怎么样?")
print(response)
"""工具执行器"""
def __init__(self):
self.tools = {} # 注册的工具
self.validator = ParameterValidator
self.error_handler = ErrorHandler()
self.retry = ExponentialBackoffRetry()
self.breaker = CircuitBreaker()
def register_tool(self, name, tool_def, func):
"""注册工具"""
self.tools[name] = {
"definition": tool_def,
"function": func
}
def execute_tool(self, tool_name, params):
"""执行工具"""
if tool_name not in self.tools:
return {
"success": False,
"error": f"工具'{tool_name}'未注册"
}
tool_info = self.tools[tool_name]
tool_def = tool_info["definition"]
tool_func = tool_info["function"]
# 验证参数
validator = self.validator(tool_def)
is_valid, errors = validator.validate(params)
if not is_valid:
return {
"success": False,
"error": "参数验证失败",
"details": errors
}
# 通过熔断器执行(带重试)
try:
def execute_with_retry():
return self.breaker.execute(
lambda: self.retry.retry(tool_func, **params)
)
result = execute_with_retry()
return {
"success": True,
"result": result,
"tool": tool_name
}
except Exception as e:
# 错误处理
error_response = self.error_handler.handle(e, {
"tool": tool_name,
"params": params
})
return {
"success": False,
"error": error_response["error"],
"retryable": error_response.get("retryable", False),
"suggestion": error_response.get("suggestion", "")
}
def handle_user_request(self, user_input):
"""处理用户请求(简化版)"""
# 1. 让LLM选择工具和提取参数(这里简化处理)
# 实际应用中,这里会调用LLM进行工具选择和参数提取
# 模拟LLM的输出
if "天气" in user_input:
tool_name = "get_weather"
# 简单提取城市(实际应用中LLM会做得更好)
if "北京" in user_input:
params = {"city": "北京", "date": "今天"}
elif "上海" in user_input:
params = {"city": "上海", "date": "今天"}
else:
params = {"city": "北京", "date": "今天"} # 默认值
else:
return "抱歉,我无法处理这个请求"
# 2. 执行工具
result = self.execute_tool(tool_name, params)
# 3. 生成最终回答
if result["success"]:
weather = result["result"]
return f"{params['city']}今天天气:{weather['condition']},温度{weather['temperature']}°C"
else:
return f"获取天气信息失败:{result['error']}"
# 使用示例
executor = ToolExecutor()
# 注册天气工具
def mock_weather_api(city, date):
"""模拟天气API"""
# 模拟API调用延迟
time.sleep(0.1)
return {"temperature": 22, "condition": "多云"}
executor.register_tool("get_weather", weather_tool, mock_weather_api)
# 处理用户请求
response = executor.handle_user_request("北京今天天气怎么样?")
print(response)
点我分享笔记